If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t-80=0
a = -16; b = 96; c = -80;
Δ = b2-4ac
Δ = 962-4·(-16)·(-80)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-64}{2*-16}=\frac{-160}{-32} =+5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+64}{2*-16}=\frac{-32}{-32} =1 $
| 10x+3x=5-2x | | 2/9x+9/4=2+3/2x | | (a+7/8)=5 | | 11*x-4=29 | | 5x+(x÷2)=11 | | -190=19x | | 1/3x=9/8 | | 5x+4=(4x-3)+3x4 | | 3x=(5x+4)+(4x-3) | | 4x-3=(5x+4)+3x | | 13x^2-72x-36=0 | | 5x+4=(4x-3)+3x | | (2x-6)(5x+7)= | | -4.3g=25, | | 36+5x-9=54 | | 3(x-7)-2=25x-287 | | 6(2x-6=-7(-2+4) | | 3x+18+5x=18- | | 15x+19=(13x+1)+(x+20) | | 12+10x+31=81 | | 12+10x+81+31=180 | | 15x+19=(13x+1)+(x+1)19 | | x+20=(15x+19)+(13x+1) | | 12+10x+31+81=180 | | 13x+1=(15x+19)+(x+20) | | -2(x-6)-1=8(x+2) | | x/4+4=-6 | | 72+3x/2=4 | | 15x+19=(13x+1)+(x+1) | | 9{3x+9}=14-{x+3} | | 6z+z=6z+1 | | 9x-25=8x-5=180 |